Of leatherbacks and lion’s manes

by Lucas Brotz

Lucas Brotz (right) helps DFO crew aboard the CCGS W.E. Ricker sort the catch of the day: juvenile salmon and lion’s mane jellyfish.

I study jellyfish, so you can imagine my surprise when I received an e-mail last year from a recovery planner for the Canadian Species at Risk Act (SARA). I am certainly not aware of any jellyfish in the world that is classified as threatened or endangered, let alone in Canadian waters where we know very little about our gelatinous fauna! On the contrary to being at risk, many jellyfish are in fact increasing in coastal ecosystems around the world. However, the subject of the recovery plan in question was not jellyfish at all, but rather the leatherback sea turtle (Dermochelys coriacea). What did I know about reptiles? Well, not much, but I was aware of one fact about leatherbacks: they are known to eat jellyfish. The reasons behind the e-mail were starting to materialize, and I was intrigued.

As their name suggests, leatherbacks do not have a hard shell like the other six species of sea turtles alive today. Rather, their shell consists of smooth, leathery skin with seven ridges running its length. Such reptiles first appeared in the fossil record about 100 million years ago when their family branched off from other hard-shelled turtles, underlining the fact that these are truly ancient mariners. Leatherbacks are massive creatures. They frequently grow to hundreds of kilograms and can potentially surpass a tonne. From tip to tail the largest exceed three meters, with their flippers spanning more than four meters.

The leatherback’s list of superlatives is nearly as large as the animals themselves! Among reptiles they are the fastest growing, fastest moving, and except for a few crocodiles, the heaviest. They are also among the most widely distributed animals in the world, mainly due to migrations that put all but a few marine mammals and bird species to shame. Surprisingly, they are also warm-blooded, and are therefore able to survive in environments far beyond the reach of their cold-blooded relatives. Believe it or not, leatherbacks have been sighted north of the Arctic Circle! To top this off, leatherbacks have been recorded diving deeper than a kilometer, plunging further into the abyss than almost all other air-breathers.

But perhaps the most astounding fact about this fascinating species (although I will admit, I am biased) is that leatherbacks can grow so large, travel so far and dive so deep on a diet consisting almost exclusively of jellyfish!

Why is this surprising? Jellyfish are roughly 95% water, therefore obtaining sufficient nutrition from them requires some serious feasting. A leatherback can consume hundreds of kilograms of jellyfish in a single day, which not only appears to supply all of their energetic demands, but also allows them to fatten up for return migrations to breeding areas. Part of the success of such a strategy relies on the fact that jellyfish often occur in dense aggregations known as blooms. In addition, jellyfish have virtually no escape response, especially from an animal as fast and maneuverable as a sea turtle. Therefore, locating dense blooms of jellies is likely key for leatherback feeding success and appears to be the sole reason why they embark on vast migrations from breeding areas in the tropics to more temperate areas, including Canadian waters.

So now you can understand why someone who studies jellyfish would receive an e-mail about endangered sea turtles. And endangered they are. While there are a number of reasons for optimism regarding leatherbacks in the Atlantic, the Pacific populations appear to be on an alarming trajectory. Their numbers are uncertain, but it is estimated that there are fewer than 3,000 nesting females left – a precipitous crash of more than 97% in only a few decades. Numbers continue to decline, and Pacific leatherbacks appear dangerously close to extinction.

As one might imagine, sightings of leatherbacks in Canadian Pacific waters are relatively rare, averaging only about one per year. While that is not a lot, members of the population do visit here. And in order to survive unthinkable migrations from remote breeding sites in Indonesia and the Solomon Islands, those turtles visiting Canada’s west coast are likely the largest and heartiest of the population. Therefore helping or saving just a few of these individuals could be crucial for a subpopulation’s survival. The areas used by leatherbacks to feed on jellyfish blooms in British Columbia represent critical habitat, but unfortunately we know relatively little about the jellyfish living in Canadian waters. Migrating leatherbacks are likely feasting on an abundance of large “true jellyfish” (class Scyphozoa), including lion’s mane jellies (Cyanea capillata), sea nettles (Chrysaora fuscescens) and moon jellies (Aurelia labiata). In order to better understand the abundance and distribution of these species, I began working with Department of Fisheries and Oceans (DFO) scientists and technicians.

Interestingly, most of the scientists I worked with are salmon specialists. This is mainly because salmon scientists possess one thing that pretty much all marine biologists and oceanographers covet: ship time. DFO crews conduct integrated ecosystem surveys several times each year in the coastal waters of British Columbia and have implemented consistent sampling methods since 1998. These sustained, year-round surveys along repeat transects are a rarity in an age of funding cuts, and the resultant datasets provide a wealth of valuable information. In addition to collecting oceanographic data, these surveys involve tows using large trawl nets to collect and study juvenile salmon populations. The unwanted by-catch in these trawls can include large jellyfish. Properly identifying and monitoring these jellyfish catches could provide new and valuable insights into these organisms in our coastal waters. This information may also be indispensable, I believe, for understanding the relationship between critically endangered leatherbacks and their gelatinous prey.

All of the scientists I worked with recognized the importance of collecting such information, and together we developed a procedure that we hope will create a permanent record of all future jellyfish catch. While I was eager to convince those I collaborated with to gather as much data as possible, I had to keep in mind that jellyfish were not the focus of the surveys and any procedure too onerous was unlikely to be adopted. Therefore, the protocol was designed to minimize the effort required for jellyfish processing, while at the same time maximizing the amount of useful information collected. In addition, a step-wise approach to jellyfish monitoring was recommended, whereby scientists and technicians can collect a minimum amount of data on jellyfish if they are analysing other catch, or obtain more detailed information if processing time allows. Thanks to this collaboration between DFO, SARA recovery planners and the Fisheries Centre, we should be able to rapidly increase our understanding of jellyfish in coastal waters in the coming years, as well as identify those regions that might be most important for foraging leatherbacks.

While eating jellyfish appears to have been a successful strategy for leatherbacks for millions of years, there are disadvantages to having a gelatinous diet in the contemporary world. Plastic debris, which now litters the oceans, often looks very much like jellyfish. Studies have found more than a third of examined leatherbacks have plastic in their intestines and the proportion for dead leatherbacks is double that. But perhaps the largest threat to leatherbacks is as a result of their trans-oceanic migrations between breeding and feeding areas. These epic journeys bring leatherbacks into repeated contact with the ocean’s most fearsome predator – humans. Leatherbacks are frequently caught as unintended by-catch or become entangled in the miles of fishing gear that crisscross the oceans. Anything that prevents turtles, which are air-breathers, from reaching the surface will cause death in less than an hour. Compound these dangers with poaching for turtle meat and eggs, global warming and an overall lack of awareness about the problems, and you start to read the Pacific leatherback’s epitaph.

An individual leatherback endures what seems like a life of hardship – swimming thousands of miles across oceans of hazards, only to have cold, stinging jellyfish for breakfast, lunch and dinner. As a species, leatherbacks have persevered through unimaginable times, including ice ages and major extinctions. In fact, they are often referred to as Earth’s last dinosaur. But it seems that leatherbacks may have finally met their match during this era dominated by the human species. I find it especially tragic to see such a charismatic animal that has survived for so long pushed to the brink of extinction in only a few decades. I have yet to be lucky enough to look into the eyes of a wild Pacific leatherback, something I long to do. I only hope that such an experience will remain a possibility.

References

Benson SR, Dutton PH, Hitipeuw C, Samber B, Bakarbessy J and Parker D (2007) Post-nesting migrations of leatherback turtles (Dermochelys coriacea) from Jamursba-Medi, Bird’s Head Peninsula, Indonesia. Chelonian Conservation and Biology 6: 150-154.

Brotz L, Cheung WWL, Kleisner K, Pakhomov E and Pauly D (2012) Increasing jellyfish populations: trends in large marine ecosystems. Hydrobiologia 690: 3-20.

Heaslip SG, Iverson SJ, Bowen WD and James MC (2012). Jellyfish support high energy intake of leatherback sea turtles (Dermochelys coriacea): video evidence from animal-borne cameras. PLoS ONE 7: e33259.

Mrosovsky N, Ryan GD and James MC (2009) Leatherback turtles: the menace of plastic. Marine Pollution Bulletin 58: 287-289.

Safina C (2006) Voyage of the Turtle. Holt, New York. 383 pp.

Spotila JR, Reina RD, Steyermark AC, Plotkin PT and Paladino FV (2000) Pacific leatherback turtles face extinction. Nature 405: 529-530.

Down at the World Ocean’s Summit

by Daniel Pauly

The British magazine The Economist hosted a huge “World Ocean Summit” in Singapore earlier this year, designed to find solutions to the ills that beset our oceans. And more precisely, to identify remedies that entrepreneurs could find ways to invest and profit from. It sounded like a reasonable goal, because we tend to live in democratic countries with market economies shaped by private enterprise, so I accepted their invitation. The head of the World Bank attended, as well as ministers from various countries, CEOs of big fishing companies, heads of international environmental NGOs, hedge fund managers, scientists…

It should have worked, but it didn’t really, despite the beautiful resort where the event took place and the flawless organization. I think it was because – mostly subtly, sometimes not so subtly – our very determined hosts, from the Editor-in-Chief to the lowliest of The Economist staffers, were pushing for “market solutions,” insisting that the remedies we identified had to make money for hedge fund managers and other investors.

It sounded all right at first – but how would this work if a health care system, for example, wasdesigned this way? Wouldn’t it leave too many people untreated, because no money can be made off them? Also, are fisheries not a gigantic example of a “market failure,” as economists call the mess we are in? (Although it is a small mess compared with that of our banking system.) But there was no space at the summit to discuss any of these things, and the complementary roles of governments and civil society. Everything that moves had to be turned into a commodity, and even some things that don’t move, like marine protected areas, which were identified as one of the places for profitable investments.

Thus my disappointment and perhaps that of Fisheries Centre Director Dr Rashid Sumaila too, who also attended. I did have the opportunity to address one of the summit’s working groups where I mentioned that the invitation of The Economist, besides being a compliment, also was a challenge, because I am often accused of spreading gloom and doom, in spite of being neither gloomy nor doomy.

The point is that a doctor – and I am one, if not of medicine – must correctly diagnose the disease at hand before being able to propose solutions leading back to health. The disease of industrial fisheries, I suggested, is “expansionitis” and it is caused largely by demand for fish in rich countries. Indeed, industrial fisheries have gone so far that we’re expanding into the world’s oceans at a rate of 1 million km2 and southward by 0.8° of latitude per year. Expansionitis is feeding essentially insatiable markets in Europe, North America and Northeast Asia, from finite fishing grounds in Africa, Latin America and Tropical Asia. Japan and the US import 60% to 70% of their food, the EU 70% to 80%. Industrial fishing is not about feeding the world’s poor.

Then, because we we re supposed to emphasize remedies, I listed those remedies for expansionitis about which there is
widespread agreement:
• Reduce and eventually abolish subsidies to fisheries – they are what feeds expansionitis;
• Rebuild fish stocks in developed countries, so that they need not grab so much of the developing countries’ fish, and export the lessons learned to the developing world;
• Allow developing countries to catch and process their own fish, and export a part of the value-added products to the developed world;
• Create arrangements providing exclusive access (to coastal resources in both developing and developed countries) to small-scale fisheries, which catch far more than industrial fisheries and could catch even more if not exposed to competition from industrial vessels;
• Reduce and eventually ban discards (Norway does it) and consume small fish directly, rather than turning them into fishmeal.
There is a huge reserve there.

But let’s face it: these remedies (all “market solutions,” incidentally) if implemented, would be the result of mostly public policy, which then would benefit the fishing industry in the long-term. In the short term, however, these remedies will be fought against tooth and nail by our friends from the private sector, that is those The Economist wants us not only to work with (which is a good thing), but to put in the driver’s seat. These are the reasons why I felt down at the Ocean Summit.

From the Front Lines of the 2012 AAAS Meeting

This post was written by by Claire Hornby, Sarah Harper, Robin Ramdeen, Dyhia Belhabib, Frédéric Le Manach and Aylin Ulman and appeared in the newsletter.

The American Association for the Advancement of Science (AAAS) held its 178th Annual Meeting in Vancouver from February 16-20, 2012. The theme of this year’s conference was “Flattening the world: building a global knowledge society”. Sea Around Us Project members were among the 8,000 attendees, participating and presenting in numerous symposium sessions and volunteering at the Project’s booth in the exhibition hall. Additional notable sessions were presented by other members of the Fisheries Centre.

Highlights from the conference included a symposium titled “Underreported yet overoptimistic: fisheries catch reconstructions and food security”, organized by Sea Around Us Project members Dr Dirk Zeller and Sarah Harper. Dirk gave an informative presentation outlining the methods used in reconstructing countries’ fisheries catches, while Frédéric Le Manach expanded on the importance of this task for tackling issues of human rights and ethics. Frédéric explained that fishing access agreements between the European Union and host countries, citing the example of Madagascar, are perpetuating socio-economic inequalities between most and least-developed countries. The catch reconstruction work for Madagascar made the first step toward revealing some of these inequalities, which suggest that fishing access agreements need to be revised to be more ethical.

In the final part of the session, Nicola Smith, a graduate of the University of British Columbia now working in the Caribbean, described her reconstruction of the catches of the Bahamas. She found that recreational fisheries catches, which account for a large
proportion of the country’s total catches, are entirely missing from official statistics. As is the case for much of the Caribbean, the economy of the Bahamas is dominated by tourism – visitors want to fish and eat seafood as part of their holiday experience. This places intense demand on the local marine environment. The take-home message of this symposium was that proper accounting of all fisheries sectors is a key component of managing fisheries resources in both a sustainable and ethical manner. The examples that Dirk, Frédéric and Nicola presented are just a handful of the 150 or so countries that will be reconstructed by the end of this year. There will definitely be many more interesting stories to tell once the reconstruction of catches for all fishing countries is complete!

Another successful symposium was “Whole-ocean economics” organized by Dr Rashid Sumaila. He revealed the newly developed Eco2 Index, which measures the economic and environmental health of developed and developing countries. Dr William Cheung also presented a conservation risk index that combines economic figures and fisheries population growth rates to reveal the economics/conservation trade-offs of fishing. It was clear from the model that not all developed countries are doing well in terms of conservation. The audience showed a particular interest in the “Whole-ocean economics” session and there was plenty of participation by professors, researchers, non-governmental organization representatives and students. A roundtable session followed the presentations and questions relating to fisheries, marine protected areas and governance generated stimulating discussions. This session succeeded in highlighting the commitment of the Fisheries Centre members to global research and collaboration.

Another symposium organized by the Sea Around Us Project was titled “Leveling the global playing field: global inferences from reliable global samples”. Dr Kristin Kleisner, a postdoctoral fellow with the Sea Around Us Project and organizer of the session, explained how to design sampling methods and why it is important to infer scientifically sound global trends. Dr Thomas Lovejoy, from the H. John Heinz III Center for Science, Economics, and the Environment in Washington DC, then discussed the use of technology to monitor biodiversity trends and species extinction. Closing the symposium, Dr Molly Jahn, from the University of Wisconsin, stressed the need to build a global information system to meet our future needs.

The Sea Around Us Project booth was also a major success. It allowed Project members to share their work with a diverse audience. For Claire Hornby, the AAAS was her first major science conference, and she was excited and nervous to have a chance to interact with scientists of various disciplines from all over the world. It was amazing to see the wide range of people that approached the booth, eager to hear about the Project’s work. Surprisingly, it seemed everyone – no matter if they were a budding scientist of five years old or an established professor – wanted to learn something about fisheries. The majority of attendees that approached the booth knew about the current state of the world’s oceans and the decline of many commercial fisheries. Family day at the AAAS brought many up-andcoming scientists to the booth. Robin Ramdeen, who volunteered that day, described how wonderful it was to see so many primary school children intrigued by the Sea Around Us Project’s display of ocean primary productivity. Their level of understanding of the importance of plankton for producing the energy upon which marine food webs are based was astounding. These inquisitive junior scientists answered their own questions about where energy comes from, both on land and at sea, and about how phytoplankton and zooplankton are essential to the diet of fish via the food web. Importantly, they were able to connect how changes in primary production could affect one of the ocean’s top predators: humans.

These were just a some of the highlights of Sea Around Us Project’s and the Fisheries Center’s contributions to the 2012 AAAS meeting. The conference was yet another example of how committed the Sea Around Us Project is not only to doing good research, but also to communicating its work to the world.

TED Talk: Daniel Pauly on Shifting Baselines

Daniel Pauly’s TED talk on Shifting Baselines is finally up! Watch the video, or read the transcript below:

I’m going to speak about a tiny, little idea. And this is about shifting baseline. And because the idea can be explained in one minute, I will tell you three stories before to fill in the time. And the first story is about Charles Darwin, one of my heroes. And he was here, as you well know, in ’35. And you’d think he was chasing finches, but he wasn’t. He was actually collecting fish. And he described one of them as very “common.” This was the sailfin grouper. A big fishery was run on it until the ’80s. Now the fish is on the IUCN Red List. Now this story, we have heard it lots of times on Galapagos and other places, so there is nothing particular about it. But the point is, we still come to Galapagos. We still think it is pristine. The brochures still say it is untouched. So what happens here?

The second story, also to illustrate another concept, is called shifting waistline. (Laughter) Because I was there in ’71, studying a lagoon in West Africa. I was there because I grew up in Europe and I wanted later to work in Africa. And I thought I could blend in. And I got a big sunburn, and I was convinced that I was really not from there. This was my first sunburn.

And the lagoon was surrounded by palm trees, as you can see, and a few mangrove. And it had tilapia about 20 centimeters, a species of tilapia called blackchin tilapia. And the fisheries for this tilapia sustained lots of fish and they had a good time and they earned more than average in Ghana. When I went there 27 years later, the fish had shrunk to half of their size. They were maturing at five centimeters. They had been pushed genetically. There were still fishes. They were still kind of happy. And the fish also were happy to be there. So nothing has changed, but everything has changed.

My third little story is that I was an accomplice in the introduction of trawling in Southeast Asia. In the ’70s — well, beginning in the ’60s — Europe did lots of development projects. Fish development meant imposing on countries that had already 100,000 fishers to impose on them industrial fishing. And this boat, quite ugly, is called the Mutiara 4. And I went sailing on it, and we did surveys throughout the southern South China sea and especially the Java Sea. And what we caught, we didn’t have words for it. What we caught, I know now, is the bottom of the sea. And 90 percent of our catch were sponges, other animals that are fixed on the bottom. And actually most of the fish, they are a little spot on the debris, the piles of debris, were coral reef fish. Essentially the bottom of the sea came onto the deck and then was thrown down.

And these pictures are extraordinary because this transition is very rapid. Within a year, you do a survey and then commercial fishing begins. The bottom is transformed from, in this case, a hard bottom or soft coral into a muddy mess. This is a dead turtle. They were not eaten, they were thrown away because they were dead. And one time we caught a live one. It was not drowned yet. And then they wanted to kill it because it was good to eat. This mountain of debris is actually collected by fishers every time they go into an area that’s never been fished. But it’s not documented.

We transform the world, but we don’t remember it. We adjust our baseline to the new level, and we don’t recall what was there. If you generalize this, something like this happens. You have on the y axis some good thing: biodiversity, numbers of orca, the greenness of your country, the water supply. And over time it changes — it changes because people do things, or naturally. Every generation will use the images that they got at the beginning of their conscious lives as a standard and will extrapolate forward. And the difference then, they perceive as a loss. But they don’t perceive what happened before as a loss. You can have a succession of changes. At the end you want to sustain miserable leftovers. And that, to a large extent, is what we want to do now. We want to sustain things that are gone or things that are not the way they were.

Now one should think this problem affected people certainly when in predatory societies, they killed animals and they didn’t know they had done so after a few generations. Because, obviously, an animal that is very abundant, before it gets extinct, it becomes rare. So you don’t lose abundant animals. You always lose rare animals. And therefore they’re not perceived as a big loss. Over time, we concentrate on large animals, and in a sea that means the big fish. They become rarer because we fish them. Over time we have a few fish left and we think this is the baseline.

And the question is, why do people accept this? Well because they don’t know that it was different. And in fact, lots of people, scientists, will contest that it was really different. And they will contest this because the evidence presented in an earlier mode is not in the way they would like the evidence presented. For example, the anecdote that some present, as Captain so-and-so observed lots of fish in this area cannot be used or is usually not utilized by fishery scientists, because it’s not “scientific.” So you have a situation where people don’t know the past, even though we live in literate societies, because they don’t trust the sources of the past.

And hence, the enormous role that a marine protected area can play. Because with marine protected areas, we actually recreate the past. We recreate the past that people cannot conceive because the baseline has shifted and is extremely low. That is for people who can see a marine protected area and who can benefit from the insight that it provides, which enables them to reset their baseline.

How about the people who can’t do that because they have no access — the people in the Midwest for example? There I think that the arts and film can perhaps fill the gap, and simulation. This is a simulation of Chesapeake Bay. There were gray whales in Chesapeake Bay a long time ago — 500 years ago. And you will have noticed that the hues and tones are like “Avatar.” (Laughter) And if you think about “Avatar,” if you think of why people were so touched by it — never mind the Pocahontas story — why so touched by the imagery? Because it evokes something that in a sense has been lost. And so my recommendation, it’s the only one I will provide, is for Cameron to do “Avatar II” underwater.

Thank you very much.

Law That Regulates Shark Fishery Is Too Liberal

Shark fins are worth more than other parts of the shark and are often removed from the body, which gets thrown back into the sea. To curtail this wasteful practice, many countries allow the fins to be landed detached from shark bodies, as long as their weight does not exceed five per cent of the total shark catch. New University of British Columbia research shows that this kind of legislation is too liberal.

study published this week in the journal Fish Biology analyzes the fin to body weight ratios for 50 different shark species.  The authors find the average fin to body mass is three per cent  – considerably lower than the five per cent ratio currently legislated by the EU and other countries.

“The five percent ratio provides an opportunity to harvest extra fins from more sharks without retaining 100 per cent of the corresponding shark carcasses,” says Sea Around Us Project researcher Leah Biery, lead author of the study. “It does not prevent waste or overfishing, as the law intended.”

Currently, the EU and eight other countries use at least a five per cent shark fin to body weight ratio for landed catch. Only 59 countries in the world have any legislation related to sharks.

“Sharks are sensitive to overfishing and it’s embarrassing how little we have done to protect them,” says Daniel Pauly, principal investigator of UBC’s Sea Around UsProject and co-author of the study. “We would like to see more science in the management and protection of sharks in the coming years.”

Researchers estimate about 26 to 73 million sharks are killed each year to feed the growing demand for shark fin.  Sharks are sensitive to overfishing because they often grow slowly, mature later, and have very few offspring.

Canada MP Fin Donnelly introduced a bill last December that would ban the import of shark fin into Canada, but it has not been voted on. The Canadian municipalities of Brantford, Mississauga, Oakville, Pickering, London and Toronto have all banned the sale and possession of shark fin.

Fish Farms from Space: The Ground Truth from Google Earth

The Great Wall of China is not the only thing you can see from space. Fish farming cages are clearly visible through Google Earth’s satellite images and University of British Columbia researchers have used them to estimate the amount of fish being cultivated in the Mediterranean.

The study, published yesterday in the online journal PLoS ONE, is the first to estimate seafood production using satellite imagery.

“Our colleagues have repeatedly shown that accurate reporting of wild-caught fish has been a problem, and we wondered whether there might be similar issues for fish farming,” says lead author Pablo Trujillo, an Oceans Science Advisor for Greenpeace International, who conducted the study while a research assistant at the UBC Fisheries Centre.

“We chose the Mediterranean because it had excellent satellite coverage and because it was of personal interest,” says Chiara Piroddi, co-author and an ecosystem modeler at the UBC Fisheries Centre. “We hand counted 20,976 finfish cages and 248 tuna cages, which you can differentiate due to their extremely large size – each tuna cage measured at more than 40 metres across.”

Almost half the cages were located off the coast of Greece and nearly one-third off of Turkey – and both countries appear to underreport their farmed fish production. The researchers note that not all areas had full satellite coverage – for instance, images were missing for large portions of the coasts of France and Israel, for reasons the authors do not fully understand.

Combining cage counts with available information on cage volume, fish density, harvest rates, and seasonal capacity, the research team estimated ocean finfish production for 16 Mediterranean countries at 225,736 tonnes (excluding tuna). The estimate corresponded with government reports for the region, suggesting that, while there are discrepancies at the level of individual countries, overall, the Mediterranean countries are giving accurate counts.

“The results are reassuring, and the methods are inspiring,” says co-author Jennifer Jacquet, a post-doctoral researcher with UBC’s Sea Around Us Project. “This shows the promise of Google Earth for collecting and verifying data, which means a few trained scientists can use a freely available program to fact-check governments and other large institutions.”

Trujillo adds that Google Earth, with its high-resolution images and consistent time series, can be a powerful tool for scientists and non-governmental organizations to monitor activities related to ocean zoning and capture fisheries.

See some coverage of the work at The Scientist.

The fishers of Jamaica are making change mon!

This is an article by Sea Around Us researcher Stephanie Lingard, and also appeared in the September/October newsletter.

Jamaica, the land of wood and water, famous for its warm people, reggae music, jerk chicken and overfished reefs. Jamaica lives up to its reputation in every aspect. The people are some of the kindest, warmest and funniest you could hope to meet in your life. The landscape is an impossibly beautiful green, the food is flavourful, and… the reefs are desolate. However, there are many reasons to expect a better future for Jamaica’s fishers and fishes.

During the winter of 2010 and spring of 2011 I was given the opportunity to live in Jamaica on an internship funded by the Canadian International Development Agency (CIDA). Having worked at the Fisheries Centre for the summer of 2010, I was delighted to find I would be working alongside the Fisheries Division of Jamaica’s Ministry of Fisheries and Agriculture. I was working with an initiative called Improving Jamaica’s Agricultural Productivity Project (IJAPP). The fisheries aspect of the project, funded in part by CIDA, had three focus points: market facilities, enhancement of fisheries resources through artificial reefs, and capacity building with fishers in six south coast fishing villages. The project also worked to establish co-management bodies within each of the fishing villages. These bodies would be responsible for managing the new markets, and community organization tasks. Capacity building included workshops concerning all aspects of life: money management, conflict resolution, ecological knowledge, fisheries management, and safety at sea, to name a few. During the workshops, fishers faces lit up, and they absorbed the information eagerly. Community members were deeply thankful to have the opportunity to learn how they could care for their resources and improve their livelihoods. Working with fishers during workshops was by far the most rewarding aspect of my time there, and I’m happy to report: progress is being made.

A long list of challenges is faced by the ecosystems of Jamaica: invasive lionfish, pollution, overfishing, destructive fishing habits, lack of regulation, hurricanes, and coral disease. Initially, working among these challenges made it difficult to stay positive and understand why we were building fish markets while previously donated gear sheds, from the European Union, sat unused. Why were new reefs, sure to be targeted by destructive fishing practices, being built? In my mind, enforcement of fish sanctuaries (MPAs), and other regulations were clearly a priority. I often asked myself what the solution was to the myriad of problems, often feeling like I had nothing to offer the fishers or the fish.

Then, as time went on, my attitude changed. The more I became involved with the fishing community, and after meeting fishers and fisheries officers, I felt things, like my attitude, could be changed. The fishers themselves provided inspiration. Despite hauling up empty pots (Antillean Z traps) day after day, they continued to smile and laugh. At community meetings hosted by the project, many fishers were outspoken with other community members about the need to stop dynamite fishing, and other destructive practices. Many fishers I spoke with also expressed that, while they may not see the benefits of their changed behaviour, it was important to keep working at it for the next generation of fishers. The fisheries division staff, Dr. Karl Aiken (the Jamaican fish expert with the University of the West Indies), and members of local NGOs provided constant inspiration as well. All of these dedicated people have worked for years amongst funding cuts, broken government promises, destructive fishers, and natural disasters, and yet they persist in good spirits.

My friend Nakhle Hado, who works with Food for the Poor, teaches lionfish handling workshops around the island. He works tirelessly with fishers to teach them less destructive fishing techniques (like deep water handlining vs. trap fishing), as well as encouraging them to catch lionfish. Along side this work, he promotes a market for lionfish by selling it on the menu of his family’s restaurant in Kingston. The fried lionfish is amazing! The trend appears to be catching on as I had several fishers tell me they prefer lionfish to other types of fish, and that they have customers who will come to them specifically for the prickly fish. In time, it may just become a Jamaican delicacy.

The Nature Conservancy is currently working with the Fisheries Division to set up enforcement of the Pedro Bank Fish Sanctuary. Pedro Banks is a large fishing ground with several small sandy cays which host a transient community of fishers approximately 60 km off the south coast of Jamaica. Although funding is slow to come through, all are hopeful this will commence before the end of this year, or in early 2012.

The Oracabessa Fish Sanctuary was finally launched on October 9, 2011, Dr. Aiken giving me the good news. There is a wonderfully dedicated group of local NGOs working to get the rest of the 8 designated fish sanctuaries off the ground: Caribbean Coastal Areas Management Foundation, Blue Fields Bay Fishermen’s Friendly Society, St. Mary Fishermen’s Cooperative, Oracabessa Foundation, The Negril Coral Reef Preservation Society, The Montego Bay Marine Park Trust, Fisheries Division, Alloah fisher group and Business Community.

Despite several decades of hardships, and slow-moving political action, there is a strong community of fish-friendly organizations and individuals in Jamaica. I hope the return of the herbivorous long-spined sea-urchin (Diadema antillarum), combined with the much anticipated launch of the fish sanctuaries, and a burgeoning lionfish market signal a recovery of Jamaica’s marine resources.

New Study Published in MEPS about Marine Predator Declines

Iconic marine predators such as sharks, tunas, swordfish, and marlins are becoming increasingly rare under current fishing trends, according to a new study published in the journal Marine Ecological progress Series. In half of the North Atlantic and North Pacific waters under national jurisdiction, fishing has led to a 90-per-cent decrease in top predators since the 1950s, and the impacts are now headed south of the Equator. The study was lead authored by former Sea Around Us Project M.Sc student Laura Tremblay-Boyer. The study is available here and the press release is here.

Analysis of FAO Report on Fisheries Statistics

Global fisheries statistics must be viewed with a critical eye. Fisheries landings data are collated by FAO and contributed by all member countries, which have varying resources and motives. In a new paper recently published in Marine Policy, Daniel Pauly and Rainier Froese take a close look at FAO’s State of the Worlds Fisheries and Aquaculture’ (SOFIA) report from 2010 and discuss the FAO’s history, as well as the implications, imperfections, and possible improvements to be made to fisheries data.

Pauly and Froese are both complimentary and critical. They point out the misleading use of the word ‘stability’ in the report as it refers to global catch data from 2005-2008, and point out that even if that global catches are indeed stable, fishing effort is rapidly expanding. They note the FAO’s acceptance of scientific data that showed China does not know how much its fisheries catch, and the large degrees of uncertainty around global trends this problem creates. Pauly and Froese point approvingly to SOFIA’s position on assemblage overfishing and their statement: ‘ We do not disagree that a general decline in mean trophic level of marine landings is likely to have occurred in many regions.’ Finally, Pauly and Froese call for cooperation between institutions, e.g., U.N. technical organization and civil society, as represented by universities and non-government organizations, to improve SOFIA reports and potentially the management of fisheries globally.

To read the full article click here.

Citation: Pauly, D. & Froese, R. 2012. Comments on FAO’s State of Fisheries and Aquaculture, or ‘SOFIA 2010’ Marine Policy 36: 746-752.